Experimental and numerical study of Taylor-Couette flow

Thumbnail Image
Date
2015-01-01
Authors
Wang, Haoyu
Major Professor
Advisor
Michael G. Olsen
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Taylor-Couette flow between in a gap of two coaxial cylinders is studied using a combination of particle image velocimetry (PIV) experimental data and computational fluid dynamics (CFD). Wavy vortex flow and modulated wavy vortex flow which are two flow regimes of Taylor-Couette flow are investigated using the PIV technique and power spectral density. In addition, the turbulent Taylor-Couette flow is studied by means of Reynolds-average Navier-Stokes (RANS) simulations and stereo-PIV. Two main turbulence models of Reynolds-average Navier-Stokes simulations are used in the investigation and verified with the PIV experimental data. The investigations provide in-depth evaluation of the simulation schemes.

This work shows that computational fluid dynamics in combination with PIV data is an excellent tool to study turbulent structures in the Taylor-Couette flow. Furthermore, this work demonstrates the in-depth evaluation of RANS simulation.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015