Design and simulation of a distortion masking control algorithm for a pneumatic cylinder

Thumbnail Image
Date
2015-01-01
Authors
Bravo Palacios, Gabriel
Major Professor
Advisor
Greg R. Luecke
Brian L. Steward
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Low energy efficiency is one of the main detractors of fluid power technology. To ensure the availability and sustainability of energy sources, fluid power technology needs to meet high energy-efficiency and cost standards. This study aims to design, simulate and test a control algorithm that attenuates the detrimental effects of air compressibility on the performance and efficiency of a pneumatic cylinder.

The transmission of power over long distances makes it more difficult for fluid power technology to meet energy-efficiency and cost requirements. Transmitting power over long distances represents a challenge particularly for pneumatics due to the compressibility of air. The compressibility of air transmitted through lengthy tubing decreases the performance and efficiency of pneumatic actuators, mainly affecting their time response and velocity.

The system under analysis was composed of a pneumatic cylinder, two proportional control valves, and connective tubing. The dynamics of the individual components were characterized through experimentation. Nonlinear and linear models for the system were validated through the comparison of simulated and experimental data. The models predicted the system behavior more accurately at 2.5 Hz, when friction effects became negligible, as compared to 1.0 and 0.5 Hz.

A controller was designed using pole/zero cancellation, a control strategy able to mask undesirable dynamics of the system being controlled. Pole/zero cancellation had superior performance in the attenuation of air compressibility effects in comparison to proportional and proportional-derivative (PD) control. System performance and efficiency were assessed in terms of the variation of the length of tubing connecting the pneumatic cylinder and the control valves.

Pole/zero cancellation enabled the cylinder to achieve similar levels of performance for long (3.0 m) tubing as with short (0.55 m) tubing. With a 1.0-Hz sinusoidal input and equal control gains, pole/zero cancellation reduced the tracking error by approximately 30% and 23% in comparison to proportional and PD control, respectively. In terms of efficiency, with the system tracking a 2.5-Hz sinusoidal command, and using equal control gains, pole/zero cancellation increased the cylinder efficiency by approximately 36% and 54% in comparison to proportional and PD control, respectively. In general, pole/zero cancellation increased the system performance and efficiency in comparison to the other control schemes applied.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 2015