Development and optimization of biofilm based algal cultivation

Thumbnail Image
Date
2015-01-01
Authors
Gross, Martin
Major Professor
Advisor
Zhiyou Wen
Lawrence Johnson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

This dissertation describes research done on biofilm based algal cultivation systems. The system that was developed in this work is the revolving algal biofilm cultivation system (RAB). A raceway-retrofit, and a trough-based pilot-scale RAB system were developed and investigated. Each of the systems significantly outperformed a control raceway pond in side-by-side tests. Furthermore the RAB system was found to require significantly less water than the raceway pond based cultivation system. Lastly a TEA/LCA analysis was conducted to evaluate the economic and life cycle of the RAB cultivation system in comparison to raceway pond. It was found that the RAB system was able to grow algae at a lower cost and was shown to be profitable at a smaller scale than the raceway pond style of algal cultivation. Additionally the RAB system was projected to have lower GHG emissions, and better energy and water use efficiencies in comparison to a raceway pond system.

Furthermore, fundamental research was conducted to identify the optimal material for algae to attach on. A total of 28 materials with a smooth surface were tested for initial cell colonization and it was found that the tetradecane contact angle of the materials had a good correlation with cell attachment. The effects of surface texture were evaluated using mesh materials (nylon, polypropylene, high density polyethylene, polyester, aluminum, and stainless steel) with openings ranging from 0.05–6.40 mm. It was found that both surface texture and material composition influence algal attachment.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 2015