Exotic Corn Lines with Increased Resistant Starch and Impact on Starch Thermal Characteristics

Thumbnail Image
Date
2010-05-01
Authors
Rohlfing, Kim
Pollak, Linda
White, Pamela
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
White, Pamela
University Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionAgronomyCenter for Crops Utilization Research
Abstract

Ten parent corn lines, including four mutants (dull sugary2, amyloseextender sugary2, amylose-extender dull, and an amylose-extender with introgressed Guatemalen germplasm [GUAT ae]) and six lines with introgressed exotic germplasm backgrounds, were crossed with each other to create 20 progeny crosses to increase resistant starch (RS) as a dietary fiber in corn starch and to provide materials for thermal evaluation. The resistant starch 2 (RS2) values from the 10 parent lines were 18.3–52.2% and the values from the 20 progeny crosses were 16.6–34.0%. The %RS2 of parents was not additive in the offspring but greater RS2 in parents was correlated to greater RS2 in the progeny crosses (r = 0.63). Differential scanning calorimetry (DSC) measured starch thermal characteristics, revealing positive correlations of peak gelatinization temperature and change in enthalpy with %RS2 (r = 0.65 and r = 0.67, P ≤ 0.05); however, % retrogradation (a measure of RS3) and retrogradation parameters did not correlate with %RS2. The %RS2 and onset temperature increased with the addition of the ae gene, likely because RS delays gelatinization.

Comments

This article is from "Cereal Chemistry", 2010, 87(3); 190-193. DOI: 10.1094/ CCHEM-87-3-0190.

Description
Keywords
Citation
DOI
Copyright
Collections