Dietary energy restriction, in part through glucocorticoid hormones, mediates the impact of 12-O-tetradecanoylphorbol-13-acetate on jun D and fra-1 in sencar mouse epidermis

Thumbnail Image
Supplemental Files
Date
2010-06-01
Authors
Przbyszewski, Joseph
Wang, Weiqun
Au, Angela
Perry, Courtney
Guetzko, Megan
Koehler, Ken
Birt, Diane
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Birt, Diane
Contract Associate
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionStatistics
Abstract

Dietary energy restriction (DER, 40% calorie reduction from fat and carbohydrate) inhibited mouse skin carcinogenesis and decreased 12-O-tetradecanoyl-13-phorbol acetate (TPA)-induced activator protein-1 (AP-1):DNA binding previously. This study measured protein levels of c-jun, jun B, jun D, c-fos, fra-1, and fra-2 and examined their contribution to AP-1:DNA binding by electrophoretic mobility shift assay (EMSA) with supershift analysis in the epidermis of control and DER Sencar mice exposed to TPA. TPA significantly increased c-jun, jun B, c-fos, fra-1, and fra-2 and decreased jun D within 3–6 h after treatment. AP-1:DNA binding reached a maximum 2.5-fold induction over controls 4 h after TPA treatment and antibodies to jun B, jun D, and fra-2 in the EMSA binding reaction resulted in supershifts in both acetone- and TPA-treated mice 1–6 h after treatment. The effect of corticosterone (CCS) and DER on the AP-1 proteins and on the composition of the AP-1:DNA complex was measured in adrenalectomized (adx) mice. DER reduced the TPA impact on jun D and enhanced the induction of fra-1. In addition, CCS-supplemented groups had significantly lower jun D and higher fra-2 than adx groups and sham groups. While sham animals treated with either acetone or TPA contained jun B, jun D, and fra-2 proteins in the AP-1:DNA complex by supershift analysis, fra-2 was no longer seen in adx DER animals. In summary, our study supports potential roles for jun D, jun B, and fra-1 in the DER regulation of AP-1 function in the Sencar mouse skin carcinogenesis model.

Comments

This is the accepted manuscript of an article published in Molecular Carcinogenesis 49, no. 6 (2010): 592–602, http://dx.doi.org/10.1002/mc.20625.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections