Campus Units

Food Science and Human Nutrition, Statistics, Agronomy

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

2007

Journal or Book Title

Nutrition and Cancer

Volume

58

Issue

1

First Page

66

Last Page

74

DOI

10.1080/01635580701308208

Abstract

Plants have been genetically enhanced to produce a number of products for agricultural, industrial and pharmaceutical purposes. This technology could potentially be applied to providing chemoprevention strategies to the general population. Resveratrol (3,5,4′-trihydroxystilbene) is a compound that has been shown to have protective activity against a number of cancers and could be an ideal candidate for such an application. Alfalfa that was genetically modified to express resveratrol-synthase was used as a model in applying biotechnological approaches to cancer prevention. The transgenic alfalfa, which accumulates resveratrol as a glucoside (piceid = trans-resveratrol-3-O−β-D-glucopyranoside) (152 ± 17.5 μ g piceid/g dry weight), was incorporated into a standard mouse diet at 20% of the diet by weight and fed for 5 wk to 6-wk-old, female CF-1 mice (N = 17–30) that were injected with a single dose of azoxymethane (5 mg/kg body weight). While the addition of resveratrol-aglycone (20 mg/kg diet) to the basal diet reduced the number of aberrant crypt foci/mouse, the transgenic alfalfa did not inhibit the number, size, or multiplicity of aberrant crypt foci in the colon of the CF-1 mice relative to control alfalfa which does not accumulate resveratrol-glucoside. However, diets containing transgenic alfalfa with an exogenous β -glucosidase (860 U/kg diet) did significantly inhibit the number of aberrant crypt foci in the distal 2 cm of the colon of the mice relative to mice fed diets containing the transgenic alfalfa without the enzyme (P < 0.05; Fisher's Combination of p-values). The β -glucosidase alone appeared to have no effect on the inhibition of aberrant crypt foci. These results suggest that piceid in transgenic piceid-accumulating alfalfa was not bioavailable.

Comments

This is the accepted manuscript of an article published in Nutrition and Cancer 58 (2007): 66–74, http://dx.doi.org/10.1080/01635580701308208. Posted with permission.

Copyright Owner

Lawrence Erlbaum Associates, Inc.

Language

en

File Format

application/pdf

Published Version

Share

COinS