Campus Units

Food Science and Human Nutrition

Document Type

Article

Publication Version

Published Version

Publication Date

3-7-2013

Journal or Book Title

Journal of Agricultural and Food Chemistry

Volume

61

Issue

13

First Page

3270

Last Page

3277

DOI

10.1021/jf305348j

Abstract

The impacts of the molecular weight (MW), viscosity, and solubility of β-glucan on the rate of in vitro starch digestion and estimated glycemic index (GI) were evaluated. Extracted oat starch and β-glucan suspensions with high, medium, and low MW were heated to gelatinize the starch. The viscosity increased and the solubility decreased with an increase in the MW of β-glucan. The in vitro starch hydrolysis of the mixtures and a control, white bread, increased as the digestion time increased. As the MW of β-glucan increased, the starch hydrolysis decreased during in vitro digestion. The in vitro estimated GI of the mixture without β-glucan, determined from the starch hydrolysis rate, was 88.3 for Jim and 80.0 for N979, which decreased to 68.4 and 66.8, respectively, with the inclusion of high-MW β-glucan. The estimated GI values were negatively correlated with the β-glucan peak and final viscosities (r = −0.81 and −0.82). These results illustrated the importance of viscosity attributed to the β-glucan MW on starch hydrolysis during in vitro digestion. These findings will help to develop new food products with a low GI by using oat β-glucan.

Comments

Reprinted (adapted) with permission from Journal of Agricultural and Food Chemistry,2013, 61(13); 3270-3277. DOI: 10.1021/jf305348j. Copyright 2013 American Chemical Society.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf