Requirements analysis for a product family of DNA nanodevices

Thumbnail Image
Date
2012-01-01
Authors
Lutz, Jack
Lathrop, James
Klinge, Titus
Stull, D. M.
Bergquist, Taylor
Henderson, Eric
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Henderson, Eric
Professor
Person
Lutz, Robyn
Professor
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

History
The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Computer ScienceGenetics, Development and Cell Biology
Abstract

DNA nanotechnology uses the information processing capabilities of nucleic acids to design self-assembling, programmable structures and devices at the nanoscale. Devices developed to date have been programmed to implement logic circuits and neural networks, capture or release specific molecules, and traverse molecular tracks and mazes. Here we investigate the use of requirements engineering methods to make DNA nanotechnology more productive, predictable, and safe. We use goal-oriented requirements modeling to identify, specify, and analyze a product family of DNA nanodevices, and we use PRISM model checking to verify both common properties across the family and properties that are specific to individual products. Challenges to doing requirements engineering in this domain include the error-prone nature of nanodevices carrying out their tasks in the probabilistic world of chemical kinetics, the fact that roughly a nanomole (a 1 followed by 14 0s) of devices are typically deployed at once, and the difficulty of specifying and achieving modularity in a realm where devices have many opportunities to interfere with each other. Nevertheless, our results show that requirements engineering is useful in DNA nanotechnology and that leveraging the similarities among nanodevices in the product family improves the modeling and analysis by supporting reuse.

Comments

This is a proceeding from 20th IEEE International Requirements Engineering Conference (RE) (2012): 211, doi: 10.1109/RE.2012.6345806. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2012