Computational prediction of protein interfaces: A review of data driven methods

Thumbnail Image
Date
2015-01-01
Authors
Xue, Li
Dobbs, Drena
Bonvin, Alexandre
Honavar, Vasant
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Dobbs, Drena
University Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

History
The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Organizational Unit
Bioinformatics and Computational Biology
The Bioinformatics and Computational Biology (BCB) Program at Iowa State University is an interdepartmental graduate major offering outstanding opportunities for graduate study toward the Ph.D. degree in Bioinformatics and Computational Biology. The BCB program involves more than 80 nationally and internationally known faculty—biologists, computer scientists, mathematicians, statisticians, and physicists—who participate in a wide range of collaborative projects.
Journal Issue
Is Version Of
Versions
Series
Department
Genetics, Development and Cell BiologyBioinformatics and Computational Biology
Abstract

Reliably pinpointing which specific amino acid residues form the interface(s) between a protein and its binding partner(s) is critical for understanding the structural and physicochemical determinants of protein recognition and binding affinity, and has wide applications in modeling and validating protein interactions predicted by high-throughput methods, in engineering proteins, and in prioritizing drug targets. Here, we review the basic concepts, principles and recent advances in computational approaches to the analysis and prediction of protein–protein interfaces. We point out caveats for objectively evaluating interface predictors, and discuss various applications of data-driven interface predictors for improving energy model-driven protein–protein docking. Finally, we stress the importance of exploiting binding partner information in reliably predicting interfaces and highlight recent advances in this emerging direction.

Comments

This article is from FEBS Letters 589 (2015): 3516, doi: 10.1016/j.febslet.2015.10.003. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections