Campus Units

Industrial and Manufacturing Systems Engineering

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

2011

Journal or Book Title

Computer Methods in Biomechanics and Biomedical Engineering

Volume

14

Issue

3

First Page

263

Last Page

270

DOI

10.1080/10255841003762042

Abstract

Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Pre-operative planning using CT is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle solving methods toward use as a pre-operative tool for reconstructing these complex fractures. Methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy, were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (nonfracture) surfaces to a pre-fracture template. The tibias were precisely reconstructed with alignment accuracies ranging from 0.03-0.4mm. This novel technology has potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case.

Comments

This is a manuscript of an article from Computer Methods in Biomechanics and Biomedical Engineering 14 (2011): 263, doi:10.1080/10255841003762042. Posted with permission.

Copyright Owner

Taylor & Francis

Language

en

File Format

application/pdf

Published Version

Share

COinS