Trunk kinematic variability as a function of time during the early phase of a repetitive lifting task

Thumbnail Image
Date
2021-02-10
Authors
Tetteh, Emmanuel
Mirka, Gary
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Mirka, Gary
University Professor
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

Lift‐to‐lift variability occurs in repetitive lifting tasks due to alterations in the lifting techniques used by the lifter, resulting in variability in lower back tissue loading. Understanding how trunk variability changes with time in the initial phases of a lifting bout may provide insights into the risk of injury during work startup. The purpose of this study was to quantify the variation of lifting kinematics and kinetics during the initial phase of a lifting bout. Twenty participants performed a repetitive lifting task continuously for 30 min. The load was equivalent to 10% of each participant's body weight and lifting was done at a rate of six lifts/min. Kinematic variables (three‐dimensional range of motion, angular velocity, and angular acceleration) of the trunk were measured using the Lumbar Motion Monitor and a dynamic biomechanical model estimated peak L5/S1 moment and spine compression. The variances of these variables were compared across 10‐min intervals: 0–10 min, 10–20 min, and 20–30 min. Results indicate a significant reduction in the variance of the peak sagittal acceleration, the sagittal range of motion, the transverse range of motion, peak sagittal moment, and peak spine compression between the first and second time intervals, followed by no significant change in variance between the second and third intervals. The downward trend in variation of these kinematic and kinetic variables suggests an initial adjustment period as the lifters reach a steady state of their lifting technique. The reduced variance of spinal loading may reduce the probability that a tissue tolerance is exceeded.

Comments

This article is published as Tetteh, Emmanuel, and Gary A. Mirka. "Trunk kinematic variability as a function of time during the early phase of a repetitive lifting task." Human Factors and Ergonomics in Manufacturing & Service Industries (2021). DOI: 10.1002/hfm.20888. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections