CO-oxidation model with superlattice ordering of adsorbed oxygen. I. Steady-state bifurcations

Thumbnail Image
Date
1999-10-01
Authors
James, E.
Song, C.
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMathematics
Abstract

We analyze a model for CO oxidation on surfaces which incorporates both rapid diffusion of adsorbed CO, and superlattice ordering of adsorbed immobile oxygen on a square lattice of adsorption sites. The superlattice ordering derives from an “eight-site adsorption rule,” wherein diatomic oxygen adsorbs dissociatively on diagonally adjacent empty sites, provided that none of the six additional neighboring sites are occupied by oxygen. A “hybrid” formalism is applied to implement the model. Highly mobile adsorbed CO is assumed randomly distributed on sites not occupied by oxygen (which is justified if one neglects CO–CO and CO–O adspecies interactions), and is thus treated within a mean-field framework. In contrast, the distribution of immobile adsorbed oxygen is treated within a lattice–gas framework. Exact master equations are presented for the model, together with some exact relationships for the coverages and reaction rate. A precise description of steady-state bifurcation behavior is provided utilizing both conventional and “constant-coverage ensemble” Monte Carlo simulations. This behavior is compared with predictions of a suitable analytic pair approximation derived from the master equations. The model exhibits the expected bistability, i.e., coexistence of highly reactive and relatively inactive states, which disappears at a cusp bifurcation. In addition, we show that the oxygen superlattice ordering produces a symmetry-breaking transition, and associated coarsening phenomena, not present in conventional Ziff–Gulari–Barshad-type reaction models.

Comments

The following article appeared in Journal of Chemical Physics 111, 14 (1999): 6579 and may be found at doi:10.1063/1.479949.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 1999
Collections