Spatial Mechanism Design in Virtual Reality With Networking

Thumbnail Image
Date
2001-09-01
Authors
Kihonge, John
Vance, Judy
Larochelle, Pierre
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vance, Judy
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Mechanisms are used in many devices to move a rigid body through a finite sequence of prescribed locations in space. The most commonly used mechanisms are four-bar planar mechanisms that move an object in one plane in space. Spatial mechanisms allow motion in three-dimensions (3D). Spatial 4C mechanisms are two degree of freedom kinematic closed-chains consisting of four rigid links simply connected in series by cylindrical (C) joints. A cylindrical joint is a two degree of freedom joint which allows translation along and rotation about a line in space. This paper describes a synthesis process for the design of 4C spatial mechanisms in a virtual environment. Virtual reality allows the user to view and interact with digital models in a more intuitive way than using the traditional humancomputer interface (HCI). The software developed as part of this research also allows multiple users to network and share the designed mechanism. Networking tools have the potential to greatly enhance communication between members of the design team at different industrial sites and therefore reduce design costs.

Comments
Description
Keywords
Citation
DOI
Source
Keywords
Copyright
Mon Jan 01 00:00:00 UTC 2001