Demonstrating Electromagnetic Noise in an Undergraduate Measurement and Instrumentation Course

Thumbnail Image
Date
2006-06-01
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sundararajan, Sriram
Associate Dean
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Electromagnetic noise (interference) is always present in a measurement system. The desire to minimize noise in your signal of interest can only be accomplished after the noise is properly identified. This paper summarizes a mechanical engineering undergraduate laboratory activity developed for ME 370 – Engineering Measurements and Instrumentation at Iowa State University. The goals of this activity are to (i) develop an understanding of how analog noise enters a measurement system and (ii) investigate several noise reduction methods. Students induce and measure capacitively coupled noise and investigate how the noise is related to noise source frequency and measurement circuit resistance. Methods to minimize capacitively coupled noise, including electrical shielding, are introduced and tested. Inductively coupled noise is then demonstrated, and the use of twisted pair wiring is shown to reduce this type of noise. Finally, conductively coupled noise is demonstrated through ground loops. Once this laboratory exercise is completed, students have an appreciation for how electromagnetic noise may be introduced into a measurement system, and how the effects of this noise can be minimized.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Sun Jan 01 00:00:00 UTC 2006