High-speed 3D shape measurement with fiber interference

Thumbnail Image
Date
2014-08-01
Authors
Li, Beiwen
Ou, Pan
Zhang, Song
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

This paper presents a miniaturized fringe projection system that only uses two fibers to potentially achieve superfast (e.g., MHz to GHz) 3D shape measurement speeds. The proposed method uses two optical fibers that carry the same wavelength of laser light with polarization and phase information properly modulated to generate high-quality sinusoidal fringe patterns through interference. The high-speed phase shifting is achieved by employing a high-speed Lithium Niobate (LN) electrooptic phase modulator. Since only two optical fibers are used to generate sinusoidal patterns, the system has a great potential of miniaturization for applications where the sensor size is critical (e.g., 3D endoscopy). Principle of the proposed techniques will be introduced, and preliminary experimental results will be presented in this paper to prove the success of the proposed method

Comments

This is a conference proceeding from Interferometry XVII: Techniques and Analysis 9203 (2014): 1, doi:10.1117/12.2060562. Posted with permission.

Copyright 2014 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014