Document Type

Article

Publication Date

2007

Journal or Book Title

Physics of Fluids

Volume

19

Issue

8

First Page

085101

DOI

10.1063/1.2756579

Abstract

The interphase transfer of turbulent kinetic energy (TKE) is an important term that affects the evolution of TKE in fluid and particle phases in particle-laden turbulent flow. This work shows that the interphase TKE transfer terms must obey a mathematical constraint, which in the limiting case of statistically homogeneous flow with zero mean velocity in both phases, requires these terms be equal and opposite. In the single-point statistical approach called the two-fluid theory, the interphase TKE transfer terms are unclosed and need to be modeled. Multiphase turbulencemodels that satisfy this constraint of conservative interphase TKE transfer admit a term-by-term comparison with true direct numerical simulations (DNS) that enforce the exact velocityboundary condition on each particle’s surface. Analysis of three models reveals that not all models satisfy the requirement of conservative interphase TKE transfer. DNS that invoke the point-particle assumption also do not obey this principle of conservative interphase TKE transfer, and this precludes the comparison of model predictions of TKE budgets in each phase with point-particle DNS. This study motivates the development of multiphase turbulencemodels based on the insights revealed by this analysis, leading to a meaningful comparison of TKE budgets with true DNS.

Comments

The following article appeared in Physics of Fluids 19 (2007): 085101 and may be found at http://dx.doi.org/10.1063/1.2756579.

Rights

Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS