Document Type

Article

Publication Version

Published Version

Publication Date

2011

Journal or Book Title

Journal of Chemical Physics

Volume

135

Issue

20

First Page

201104-1

Last Page

201104-4

DOI

10.1063/1.3665932

Abstract

The direct measurement of self-broadened linewidths using the time decay of pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) signals is demonstrated in gas-phase N2 and O2 from 1–20 atm. Using fs pump and Stokes pulses and a spectrally narrowed ps probe pulse, collisional dephasing rates with time constants as short as 2.5 ps are captured with high accuracy for individual rotational transitions. S-branch linewidths of N2 and O2 from ∼0.06 to 2.2 cm−1 and the line separation of O2 triplet states are obtained from the measured dephasing rates and compared with high-resolution, frequency-domain measurements and S-branch approximations using the modified exponential gap model. The accuracy of the current measurements suggests that the fs/ps RCARS approach is well suited for tracking the collisional dynamics of gas-phase mixtures over a wide range of pressures.

Comments

The following article appeared in Journal of Chemical Physics 135, 201104 (2011): and may be found at doi: 10.1063/1.3665932.

Rights

Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS