An evaluation of asymmetric interfaces for bimanual virtual assembly with haptics

Thumbnail Image
Date
2016-07-07
Authors
Carlson, Patrick
Vance, Judy
Berg, Meisha
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vance, Judy
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Immersive computing technology provides a human–computer interface to support natural human interaction with digital data and models. One application for this technology is product assembly methods planning and validation. This paper presents the results of a user study which explores the effectiveness of various bimanual interaction device configurations for virtual assembly tasks. Participants completed two assembly tasks with two device configurations in five randomized bimanual treatment conditions (within subjects). A Phantom Omni® with and without haptics enabled and a 5DT Data Glove were used. Participant performance, as measured by time to assemble, was the evaluation metric. The results revealed that there was no significant difference in performance between the five treatment conditions. However, half of the participants chose the 5DT Data Glove and the haptic-enabled Phantom Omni® as their preferred device configuration. In addition, qualitative comments support both the preference of haptics during the assembly process and comments confirming Guiard’s kinematic chain model.

Comments

This is a manuscript from Virtual Reality 20 (2016): 193. The final publication is available at Springer via http:// dx.doi.org/10.1007/s10055-016-0290-z

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections