Campus Units

Mechanical Engineering, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

2016

Journal or Book Title

ACS Applied Materials & Interfaces

Volume

8

Issue

45

First Page

30941

Last Page

30947

DOI

10.1021/acsami.6b10047

Abstract

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts. The mercapto-silanization of the SiO2 microfibers enables strong covalent attachment with PtNPs, and the resultant PtNP–SiO2 fibers act as a robust, high surface area catalyst for H2O2 decomposition. The PtNP–SiO2 catalysts are fitted inside a micro UUV reaction chamber for vehicular propulsion; the catalysts can propel a micro UUV for 5.9 m at a velocity of 1.18 m/s with 50 mL of 50% (w/w) H2O2. The concomitance of facile fabrication, economic and scalable processing, and high performance—including a reduction in H2O2 decomposition activation energy of 40–50% over conventional material catalysts—paves the way for using these nanostructured microfibers in modern, small-scale underwater vehicle propulsion systems.

Comments

This article is published as Chen, Bolin, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners et al. "Platinum Nanoparticle Decorated SiO2 Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion." ACS Applied Materials & Interfaces 8, no. 45 (2016): 30941-30947. DOI:10.1021/acsami.6b10047.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS