Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability

Thumbnail Image
Date
2016-06-15
Authors
Lind, Kara
Lee, Nigel
Sizmur, Tom
Siemianowski, Oskar
Van Bruggen, Shawn
Ganapathysubramanian, Baskar
Cademartiri, Ludovico
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMechanical EngineeringMaterials Science and EngineeringChemical and Biological Engineering
Abstract

We describe the design, characterization, and use of “programmable”, sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and <1$ in disposable cost. These systems maintain these environmental parameters constant for at least 14 days with minimal intervention (one minute every two days). The design is composed entirely of off-the-shelf components (e.g., LEGO® bricks) and is characterized by (i) a separation of root and shoot environment (which is physiologically relevant and facilitates imposing specific conditions on the root system, e.g., darkness), (ii) the development of the root system on a flat surface, where the root enjoys constant contact with nutrient solution and air, (iii) a compatibility with root phenotyping. We demonstrate phenotyping by characterizing root systems of Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology–the size distribution of the areas encircled by roots–appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes.

Comments

This article is published as Lind, Kara R., Nigel Lee, Tom Sizmur, Oskar Siemianowski, Shawn Van Bruggen, Baskar Ganapathysubramaniam, and Ludovico Cademartiri. "Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability." PloS one 11, no. 6 (2016): e0155960. DOI:10.1371/journal.pone.0155960. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections