Campus Units

Mechanical Engineering, Electrical and Computer Engineering

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

4-2012

Journal or Book Title

Computational Materials Science

Volume

55

First Page

113

Last Page

126

DOI

10.1016/j.commatsci.2011.12.012

Abstract

Solvent-based thin-film deposition constitutes a popular class of fabrication strategies for manufacturing organic electronic devices like organic solar cells. All such solvent-based techniques usually involve preparing dilute blends of electron-donor and electron-acceptor materials dissolved in a volatile solvent. After some form of coating onto a substrate to form a thin film, the solvent evaporates. An initially homogeneous mixture separates into electron-acceptor rich and electron-donor rich regions as the solvent evaporates. Depending on the specifics of the blend, processing conditions, and substrate characteristics different morphologies are typically formed. Experimental evidence consistently confirms that the resultant morphology critically affects device performance. A computational framework that can predict morphology evolution can significantly augment experimental analysis. Such a framework will also allow high throughput analysis of the large phase space of processing parameters, thus yielding considerable insight into the process–structure–property relationships governing organic solar cell behavior.

In this paper, we formulate a computational framework to predict evolution of morphology during solvent-based fabrication of organic thin films. This is accomplished by developing a phase field-based model of evaporation-induced and substrate-induced phase-separation in ternary systems. This formulation allows most of the important physical phenomena affecting morphology evolution during fabrication to be naturally incorporated. We discuss the various numerical and computational challenges associated with a three dimensional, finite-element based, massively parallel implementation of this framework. This formulation allows, for the first time, to model three-dimensional nanomorphology evolution over large time spans on device scale domains. We illustrate this framework by investigating and quantifying the effect of various process and system variables on morphology evolution. We explore ways to control the morphology evolution by investigating different evaporation rates, blend ratios and interaction parameters between components.

Comments

This is a manuscript of an article published as Wodo, Olga, and Baskar Ganapathysubramanian. "Modeling morphology evolution during solvent-based fabrication of organic solar cells." Computational Materials Science 55 (2012): 113-126. DOI:10.1016/j.commatsci.2011.12.012. Posted with permission.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

Elsevier B.V.

Language

en

File Format

application/pdf