A software framework for data dimensionality reduction: application to chemical crystallography

Thumbnail Image
Date
2014-01-01
Authors
Samudrala, Sai
Balachandran, Prasanna
Zola, Jaroslaw
Rajan, Krishna
Ganapathysubramanian, Baskar
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical EngineeringElectrical and Computer EngineeringMaterials Science and Engineering
Abstract

Materials science research has witnessed an increasing use of data mining techniques in establishing process‐structure‐property relationships. Significant advances in high‐throughput experiments and computational capability have resulted in the generation of huge amounts of data. Various statistical methods are currently employed to reduce the noise, redundancy, and the dimensionality of the data to make analysis more tractable. Popular methods for reduction (like principal component analysis) assume a linear relationship between the input and output variables. Recent developments in non‐linear reduction (neural networks, self‐organizing maps), though successful, have computational issues associated with convergence and scalability. Another significant barrier to use dimensionality reduction techniques in materials science is the lack of ease of use owing to their complex mathematical formulations. This paper reviews various spectral‐based techniques that efficiently unravel linear and non‐linear structures in the data which can subsequently be used to tractably investigate process‐structure‐property relationships. In addition, we describe techniques (based on graph‐theoretic analysis) to estimate the optimal dimensionality of the low‐dimensional parametric representation. We show how these techniques can be packaged into a modular, computationally scalable software framework with a graphical user interface ‐ Scalable Extensible Toolkit for Dimensionality Reduction (SETDiR). This interface helps to separate out the mathematics and computational aspects from the materials science applications, thus significantly enhancing utility to the materials science community. The applicability of this framework in constructing reduced order models of complicated materials dataset is illustrated with an example dataset of apatites described in structural descriptor space. Cluster analysis of the low‐dimensional plots yielded interesting insights into the correlation between several structural descriptors like ionic radius and covalence with characteristic properties like apatite stability. This information is crucial as it can promote the use of apatite materials as a potential host system for immobilizing toxic elements.

Comments

This article is published as Samudrala, Sai Kiranmayee, Prasanna Venkataraman Balachandran, Jaroslaw Zola, Krishna Rajan, and Baskar Ganapathysubramanian. "A software framework for data dimensionality reduction: application to chemical crystallography." Integrating Materials and Manufacturing Innovation 3, no. 1 (2014): 1-20. DOI: 10.1186/s40192-014-0017-5. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections