Efficient Intersection of Surface Normals With Milling Tool Swept Volumes for Discrete Three-Axis NC Verification

Thumbnail Image
Date
1992-06-01
Authors
Oliver, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Oliver, James
Director-SICTR
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

An efficient algorithm is presented for intersecting vectors with swept solids which represent three-axis numerically controlled (NC) milling tool motions. The intersection calculation proceeds in hierarchical steps through a series of progressively more exact definitions of the shape of the tool swept volume. At each step, results of intermediate calculations are used to determine whether intersection with an exact representation of the solid is possible and, if so, where and how the swept volume model must be refined for the next step. This structure ensures that superfluous intersection calculations are minimized. This intersection technique has been successfully implemented as part of an algorithm for automatic verification of three-axis NC milling programs, and may also be useful for applications in robotics and factory automation.

Comments

This article is from Journal of Mechanical Design 114 (1992): 283–287, doi:10.1115/1.2916944. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Wed Jan 01 00:00:00 UTC 1992
Collections