Comparisons of Annular Hydrodynamic Structures in 3D Fluidized Beds Using X-Ray Computed Tomography Imaging

Thumbnail Image
Date
2012-08-09
Authors
Drake, Joshua
Heindel, Theodore
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Fluidized beds are common equipment in many process industries. Knowledge of the hydrodynamics within a fluidized bed on the local scale is important for the improvement of scale-up and process efficiencies. This knowledge is lacking due to limited observational technologies at the local scale. This paper uses X-ray computed tomography (CT) imaging to describe the local time-average gas holdup differences of annular hydrodynamic structures that arise through axisymmetric annular flow in a 10.2 cm and 15.2 cm diameter cold flow fluidized bed. The aeration scheme used is similar to that provided by a porous plate and hydrodynamic results can be directly compared. Geldart type B glass bead, ground walnut shell, and crushed corncob particles were studied at various superficial gas velocities. Assuming axisymmetry, the local 3D time-average gas holdup data acquired through X-ray CT imaging was averaged over concentric annuli, resulting in a 2D annular and time-average gas holdup map. These gas holdup maps show that four different types of annular hydrodynamic structures occur in the fluidized beds of this study: zones of (1) aeration jetting, (2) bubble coalescence, (3) bubble rise, and (4) particle shear. Changes in the superficial gas velocities, bed diameters, and bed material densities display changes in these zones. The 2D gas holdup maps provide a benchmark that can be used by computational fluid dynamic (CFD) users for the direct comparisons of 2D models, assuming axisymmetric annular flow.

Comments

This article is from Journal of Fluids Engineering 134 (2012): 081305, doi:10.1115/1.4007119. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections