Tailorable polymer waveguides for miniaturized bio-photonic devices via two-polymer microtransfer molding

Thumbnail Image
Date
2006-08-31
Authors
Lee, Jae-Hwang
Ye, Zhuo
Constant, Kristen
Ho, Kai-Ming
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Constant, Kristen
Vice President and Chief Information Officer
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMaterials Science and Engineering
Abstract

Traditional optical fibers have been developed to achieve novel characteristics for both macro- and micro-applications. Inorganic optical waveguides using two-dimensional photonic crystals and silicon-on-insulator technology are examples of recent trends for macro- and micro-scale optical applications, respectively. As bio-photonics devices operate mostly with visible light, visible-transparent materials such as metal oxides and polymers are preferred as the guiding medium. Although polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited by conventional lithography. We present a non-optical lithographic technique, called two-polymer microtransfer molding, to fabricate polymer nano-waveguides, on-chip light sources and couplers. Micro-sources using quantum dots emitting red light (625nm) are successfully embedded in a waveguides array as the on-chip light sources. Fabrication of a grating coupler is also attempted for various external light sources including lasers and white light. We have quantified propagation losses of the waveguides using CCD photometry. The guiding loss is approximately 1.7dB/mm. We also demonstrated that the surface roughness of the fabricated waveguides can be reduced by chemical etching. We demonstrate that low cost, high yield, high fidelity, and tailorable fabrication of bio-photonic devices are achievable by the combination of the presented techniques.

Comments

This proceeding is published as Jae-Hwang Lee ; Zhuo Ye ; Kristen Constant and Kai-Ming Ho "Tailorable polymer waveguides for miniaturized bio-photonic devices via two-polymer microtransfer molding", Proc. SPIE 6327, Nanoengineering: Fabrication, Properties, Optics, and Devices III, 63270J (August 31, 2006); doi:10.1117/12.681174. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2006