Historical Changes in Fish Assemblage Structure in Midwestern Nonwadeable Rivers

Thumbnail Image
Date
2014-01-01
Authors
Parks, Timothy
Quist, Michael
Pierce, Clay
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Pierce, Clay
Affiliate Assistant Professor
Research Projects
Organizational Units
Organizational Unit
Natural Resource Ecology and Management
The Department of Natural Resource Ecology and Management is dedicated to the understanding, effective management, and sustainable use of our renewable natural resources through the land-grant missions of teaching, research, and extension.
Journal Issue
Is Version Of
Versions
Series
Department
Natural Resource Ecology and Management
Abstract

Historical change in fish assemblage structure was evaluated in the mainstems of the Des Moines, Iowa, Cedar, Wapsipinicon, and Maquoketa rivers, in Iowa. Fish occurrence data were compared in each river between historical and recent time periods to characterize temporal changes among 126 species distributions and assess spatiotemporal patterns in faunal similarity. A resampling procedure was used to estimate species occurrences in rivers during each assessment period and changes in species occurrence were summarized. Spatiotemporal shifts in species composition were analyzed at the river and river section scale using cluster analysis, pairwise Jaccard's dissimilarities, and analysis of multivariate beta dispersion. The majority of species exhibited either increases or declines in distribution in all rivers with the exception of several “unknown” or inconclusive trends exhibited by species in the Maquoketa River. Cluster analysis identified temporal patterns of similarity among fish assemblages in the Des Moines, Cedar, and Iowa rivers within the historical and recent assessment period indicating a significant change in species composition. Prominent declines of backwater species with phytophilic spawning strategies contributed to assemblage changes occurring across river systems.

Comments

This article is from American Midland Naturalist 171 (2014): 27, doi:10.1674/0003-0031-171.1.27.

Description
Keywords
Citation
DOI
Copyright
Collections