Campus Units

Mathematics, Physics and Astronomy, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

4-2015

Journal or Book Title

Journal of Chemical Physics

Volume

142

Issue

16

First Page

164105-1

Last Page

164105-12

DOI

10.1063/1.4918908

Abstract

Threshold versions of Schloegl's model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. Mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

Comments

The following article appeared in Journal of Chemical Physics 142, 16 (2015): 164105 and may be found at doi: 10.1063/1.4918908.

Rights

Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Share

COinS