Transverse energy production and charged-particle multiplicity at midrapidity in various systems from root s(NN)=7.7 to 200 GeV

Thumbnail Image
Date
2016-02-03
Authors
Adare, Andrew
Apadula, Nicole
Belikov, S.
Campbell, Sarah
Constantin, Paul
Ding, Lei
Dion, Alan
Grau, Nathan
Hill, John
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ogilvie, Craig
Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Physics and Astronomy
Abstract

Measurements of midrapidity charged-particle multiplicity distributions, dN(ch)/d eta, and midrapidity transverse-energy distributions, dE(T)/d eta, are presented for a variety of collision systems and energies. Included are distributions for Au + Au collisions at root s(NN) = 200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV, Cu + Au collisions at root s(NN) = 200 GeV, U + U collisions at root s(NN) = 193 GeV, d + Au collisions at root s(NN) = 200 GeV, He-3 + Au collisions at root s(NN) = 200 GeV, and p + p collisions at root s(NN) = 200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, N-part, and the number of constituent quark participants, N-qp. For all A + A collisions down to root s(NN) = 7.7 GeV, it is observed that the midrapidity data are better described by scaling with N-qp than scaling with N-part. Also presented are estimates of the Bjorken energy density, epsilon(BJ), and the ratio of dE(T)/d eta to dN(ch)/d eta, the latter of which is seen to be constant as a function of centrality for all systems.

Comments

This is an article from Physical Review C 93 (2016): 024901, doi:10.1103/PhysRevC.93.024901. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections