Document Type

Article

Publication Date

4-1965

Journal or Book Title

Physical Review

Volume

138

Issue

2A

First Page

A530

Last Page

A533

DOI

10.1103/PhysRev.138.A530

Abstract

Reflectivity measurements on single-crystal Cr2O3 have been made at room temperature in the wavelength range 1 to 45 μ. A classical oscillator analysis of the data has determined the frequencies, strengths and line-widths of the optical-lattice vibration modes with dipole moment vibrating parallel and perpendicular to the c axis. The modes vibrating parallel to the c axis occur at 538 and 613 cm−1. Those vibrating perpendicular to the c axis occur at 417, 444, 532, and 613 cm−1. Forbidden modes, believed to be caused by surface shear strains, have been observed. Vibration frequencies of long-wavelength longitudinal modes corresponding to the transverse vibration frequencies quoted above were calculated from the zeros of the real part of the dielectric constant. These values offer excellent experimental verification of the generalized Lyddane-Sachs-Teller equation derived by Kurosawa and by Cochran and Cowley. Comparison of the transverse-optic-mode frequencies of Cr2O3 with those of α−Al2O3 shows a considerable increase in force constants for the former, probably due to increased covalent bonding in Cr2O3.

Comments

This article is from Physical Review 138 (1965):A530, doi:10.1103/PhysRev.138.A530. Posted with permission.

Copyright Owner

The American Physical Society

Language

en

File Format

application/pdf

Share

COinS