Coupling Soybean Cyst Nematode Damage to CROPGRO-Soybean

Thumbnail Image
Date
2002-01-01
Authors
Fallick, J.
Batchelor, W. D.
Tylka, G. L.
Niblack, T. L.
Paz, J. O.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Tylka, Gregory
Morrill Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and MicrobiologyAgricultural and Biosystems Engineering
Abstract

The soybean cyst nematode (SCN) Heterodera glycines Ichinohe is responsible for substantial economic losses in soybean (Glycine max L. Merr.) production throughout the U.S. Results from past efforts to quantify the severity of crop damage resulting from SCN are often subject to variable experimental conditions resulting from differences in weather, soil type, and cultivar. Because of the difficulty in accounting for these variables, a process–oriented crop growth simulation model was chosen as a platform for studying the dynamics of SCN damage and for transferring knowledge between crop production scenarios. The objective of this study was to develop and evaluate hypotheses for coupling SCN damage to the process–oriented crop growth model CROPGRO–Soybean. A monomolecular function was used to relate daily SCN damage to initial population density of SCN eggs. The equation was incorporated into the crop model in order to test two hypotheses of how SCN damage occurs. The first hypothesis was that SCN reduce daily photosynthesis (Pg), while the second hypothesis was that SCN reduce daily potential root water uptake (RWU).

Canopy biomass data collected in 1997 and 1998 from a site in Iowa were used to estimate damage function parameters for two distinct coupling points, one applied to reduce daily photosynthesis (Pg) and the other applied to reduce daily potential root water uptake (RWU). Function parameters were estimated by minimizing the log transformation of root mean square error (RMSE) between predicted and measured canopy biomass collected every 2 weeks during the season in Iowa. Biomass data collected in 1997 and 1998 from an independent site in Missouri were used to validate the SCN damage models. The minimum root mean squared errors (RMSE) of canopy and grain biomass were 0.245 and 0.198 log10(kg ha–1), respectively, for the RWU coupling point, and 0.238 and 0.193 log10(kg ha–1), respectively, for the Pg coupling point at the independent site in Missouri. The damage functions transferred very well to the independent site. Validation showed that the Pg coupling point represented the variability of both canopy and final yield data slightly better than the RWU coupling point.

Comments

This article is published as Fallick, J.B., W.D. Batchelor, G.L. Tylka, T.L. Niblack, and J.O. Paz. 2002. Coupling soybean cyst nematode damage to CROPGRO-Soybean. Transactions of the ASAE 45:433-441, doi: 10.13031/2013.8512. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2002
Collections