Continued Developments in the Modeling of Complex Dimension and Orientation Variation in Split D Differential Eddy Current Probes

Thumbnail Image
Date
2016-01-01
Authors
Mooers, Ryan
Aldrin, John
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Over the past few years, the complexity of models for split D differential eddy current probes has increased significantly. Moving from rather simplistic models where coils and cores were modeled symmetrically to the current state where validation can be done using very asymmetric coils [1, 2, 3]. Last year results showing a large amount of modeling error for variation in the orientation of the various components of a split D probe were presented. As a follow-on to this effort, additional modeling work has been performed looking into alleviating this error. One of the major factors being investigated this year is increasing mesh resolution. Convergence and statistical analysis will be performed on the data to determine the appropriate mesh resolution necessary for future modeling efforts involving orientation variation is needed. Recent work has addressed a model validation study using a large split D probe scanned over a notch at various orientations. Data from the previously described simulations will be compared to the experimental data collected. By running the simulations at various mesh resolutions, it is anticipated that a pattern will emerge detailing how the mesh resolution needs to changes to achieve comparable levels of accuracy as the probe orientation varies.

Comments
Description
Keywords
Citation
DOI
Source
Copyright