A Novel Approach to High-temperature In-situ Ultrasonic NDE Using Magnetostriction

Thumbnail Image
Date
2016-01-01
Authors
Ashish, Antony
Balasubramaniam, Krishnan
Rojagopal, Prabhu
Kumar, Anish
Rao, B. Purnachandra
Jayakumar, T.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Online ultrasonic NDE at high-temperature is of much interest to the power, process and automotive industries in view of possible savings in down-time. This paper describes a novel approach to develop ultrasonic transducers capable of high-temperature in-situ operation using the principle of magnetostriction. Preliminary design from previous research by the authors is extended for operation at 1 MHz, and elevated temperatures by using MetGlas s the magnetostrictive core. Ultrasonic signals in pulse-echo mode are experimentally obtained from the ultrasonic transducer thus developed, in simulated high temperature environment of 350 °C for 10 hours. Advantages and challenges for practical deployment of this approach are discussed.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright