Oxidizing side of the photosystem I

Thumbnail Image
Date
1999
Authors
Sun, Jun
Major Professor
Advisor
Parag R. Chitnis
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Biochemistry, Biophysics and Molecular Biology

The Department of Biochemistry, Biophysics, and Molecular Biology was founded to give students an understanding of life principles through the understanding of chemical and physical principles. Among these principles are frontiers of biotechnology such as metabolic networking, the structure of hormones and proteins, genomics, and the like.

History
The Department of Biochemistry and Biophysics was founded in 1959, and was administered by the College of Sciences and Humanities (later, College of Liberal Arts & Sciences). In 1979 it became co-administered by the Department of Agriculture (later, College of Agriculture and Life Sciences). In 1998 its name changed to the Department of Biochemistry, Biophysics, and Molecular Biology.

Dates of Existence
1959–present

Historical Names

  • Department of Biochemistry and Biophysics (1959–1998)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Biochemistry, Biophysics and Molecular Biology
Abstract

Photosynthesis converts solar energy into the biological sources of energy for the life on our planet. Photosystem I (PSI) is one of the two reaction centers of oxygenic photosynthesis. PSI is a multiheteromeric membrane-protein complex that catalyzes light-driven electron transfer from plastocyanin or cytochrome c6 to ferredoxin. The PsaA and PsaB subunits form the heterodimeric core that harbors the primary electron donor P700. On the oxidizing side of the PSI complex, plastocyanin or cytochrome c6 donates electrons to the P700 reaction center. The objective of this dissertation is to identify elements of molecular recognition on the oxidizing side of PSI;To identify PSI regions that are exposed on the luminal oxidizing side, the topography of the PSI complex from Synechocystis sp. PCC 6803 was examined by biochemical analyses. These studies indicated that the H and J luminal loops of the core proteins were the most logical candidates for hydrophobic interactions with the donor proteins. To test this hypothesis, site-directed mutations were generated in these loops. Biochemical characteristics of these mutants provided evidence for interactions between the electron donor proteins and a luminal surface helix in the J loop of the PsaB protein. Sections of the H loop of PsaB plays an important role in the structural integrity of the PsaB protein. The N-terminal lysine-rich region of PsaF in eukaryotic PSI complex has been proposed to provide a binding site for plastocyanin and cytochrome c6 through electrostatic interactions. Chimeric PsaF proteins containing the lysine-rich region of spinach PsaF were produced in Synechocystis sp. PCC 6803 cells through mutagenesis. Cross-linking and functional studies showed that the lysine-rich region of spinach PsaF protein is sufficient for binding of donor proteins, but not for the electron transfer within the intermolecular complex. The results in this dissertation revealed the structural basis for the molecular recognition on the oxidizing side of PSI.

Comments
Description
Keywords
Citation
Source
Copyright
Fri Jan 01 00:00:00 UTC 1999