A real-time active database for high transaction loads and moderate deadlines

Thumbnail Image
Date
1998
Authors
Carr, Donald
Major Professor
Advisor
Terry A. Smay
Leslie L. Miller
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

A large class of real-time database problems has very high transaction loads and moderate deadlines. Traditional approaches have not been designed to handle such problems. A model based on the use of encapsulated events and rule objects has been developed. The model describes an active, real-time, object-oriented, memory-resident database environment (REACT). A system based on the model has been designed and implemented. A concurrency control algorithm was developed that uses the extra information available from the object-oriented and active features of REACT to pre-process the database and speed up concurrency control. Analysis was done for both single and multiple processor systems. For multiprocessor analysis a simulator was developed to verify the performance of REACT on a multiprocessor system. Examples of all the features needed for an actual system are given along with examples of how REACT can be used to solve real-world control and monitoring problems. Algorithms have been developed to allow users to test that the properties termination, confluence, and observable determinism hold for a target REACT database.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 1998