Carbon conversion during bubbling fluidized bed gasification of biomass

Thumbnail Image
Date
2008-01-01
Authors
Timmer, Kevin
Major Professor
Advisor
Robert C. Brown
Steven J. Hoff
Song-Charng Kong
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Gasification is one means of transforming biomass so that it can be more easily utilized as a renewable source of thermal energy, transportation fuel, and chemicals. Under typical gasification conditions it is not uncommon that a portion of the carbon entering with the biomass leaves the reactor unconverted as char. Understanding and improving carbon conversion during biomass gasification in an atmospheric bubbling fluidized bed reactor is the focus of this study.;To better understand the intricacies of biomass gasification a carbon conversion analytic methodology was developed. The methodology is based on a mass balance of the fixed carbon entering and leaving the gasifier. It allows fixed carbon leaving the reactor by elutriation to be distinguished from that which has been chemically converted. Carbon conversion analysis was applied to several steady state gasification experiments in a laboratory scale bubbling fluidized bed reactor utilizing ground seed corn as the feedstock. The impact on the gasification of ground seed corn was investigated for variations in the equivalence ratio, the gasification temperature, the superficial gas velocity, the biomass particle size, and the concentration of H2O entering the reactor. Insights gleaned from these experiments suggest that carbon conversion during gasification of ground seed corn in a bubbling fluidized bed is limited by elutriation of char comminuted by either fragmentation or chemically assisted attrition. Consequently, increased carbon conversion was realized with reductions in the superficial gas velocity through the reactor.

Comments
Description
Keywords
Citation
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008