Document Type

Article

Publication Version

Published Version

Publication Date

2002

Journal or Book Title

Genetics Selection Evolution

Volume

34

Issue

5

First Page

537

Last Page

555

Abstract

Markov chain Monte Carlo (MCMC) methods have been proposed to overcome computational problems in linkage and segregation analyses. This approach involves sampling genotypes at the marker and trait loci. Among MCMC methods, scalar-Gibbs is the easiest to implement, and it is used in genetics. However, the Markov chain that corresponds to scalar- Gibbs may not be irreducible when the marker locus has more than two alleles, and even when the chain is irreducible, mixing has been observed to be slow. Joint sampling of genotypes has been proposed as a strategy to overcome these problems. An algorithm that combines the Elston-Stewart algorithm and iterative peeling (ESIP sampler) to sample genotypes jointly from the entire pedigree is used in this study. Here, it is shown that the ESIP sampler yields an irreducible Markov chain, regardless of the number of alleles at a locus. Further, results obtained by ESIP sampler are compared with other methods in the literature. Of the methods that are guaranteed to be irreducible, ESIP was the most efficient.

Comments

This article is from Genetics Selection Evolution 34 (2002): 537. Posted with permission.

Rights

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright Owner

S.A. Fernández et al.

Language

en

File Format

application/pdf

Share

COinS