Campus Units

Statistics

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

10-2009

Journal or Book Title

IEEE Transactions on Medical Imaging

Volume

28

Issue

10

First Page

1615

Last Page

1622

DOI

10.1109/TMI.2009.2024415

Abstract

Estimating the noise parameter in magnitude magnetic resonance (MR) images is important in a wide range of applications. We propose an automatic noise estimation method that does not rely on a substantial proportion of voxels being from the background. Specifically, we model the magnitude of the observed signal as a mixture of Rice distributions with common noise parameter. The Expectation-Maximization (EM) algorithm is used to estimate the parameters, including the common noise parameter. The algorithm needs initializing values for which we provide some strategies that work well. The number of components in the mixture model also need to be estimated en route to noise estimation and we provide a novel approach to doing so. Our methodology performs very well on a range of simulation experiments and physical phantom data. Finally, the methodology is demonstrated on four clinical datasets.

Comments

This is a manuscript of an article from IEEE Transactions on Medical Imaging 28 (2009): 1615, doi: 10.1109/TMI.2009.2024415. Posted with permission. Copyright 2009 IEEE.

Copyright Owner

IEEE

Language

en

File Format

application/pdf

Published Version

Share

COinS