Isolation and Characterization of Methicillin-Resistant Staphylococcus aureus from Pork Farms and Visiting Veterinary Students

Thumbnail Image
Date
2013-01-03
Authors
Beahm, Aleigh
Hanson, Blake
Layman, Lori
Karriker, Locke
Ramirez, Alejandro
Smith, Tara
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ramirez, Alejandro
Assistant Professor
Person
Karriker, Locke
Morrill Professor
Research Projects
Organizational Units
Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
Versions
Series
Department
Veterinary Diagnostic and Production Animal Medicine
Abstract

In the last decade livestock-associated methicillin-resistant S. aureus (LA-MRSA) has become a public health concern in many parts of the world. Sequence type 398 (ST398) has been the most commonly reported type of LA-MRSA. While many studies have focused on long-term exposure experienced by swine workers, this study focuses on short-term exposures experienced by veterinary students conducting diagnostic investigations. The objectives were to assess the rate of MRSA acquisition and longevity of carriage in students exposed to pork farms and characterize the recovered MRSA isolates. Student nasal swabs were collected immediately before and after farm visits. Pig nasal swabs and environmental sponge samples were also collected. MRSA isolates were identified biochemically and molecularly including spa typing and antimicrobial susceptibility testing. Thirty (30) veterinary students were enrolled and 40 pork farms were visited. MRSA was detected in 30% of the pork farms and in 22% of the students following an exposure to a MRSA-positive pork farm. All students found to be MRSA-positive initially following farm visit were negative for MRSA within 24 hours post visit. Most common spa types recovered were t002 (79%), t034 (16%) and t548 (4%). Spa types found in pork farms closely matched those recovered from students with few exceptions. Resistance levels to antimicrobials varied, but resistance was most commonly seen for spectinomycin, tetracyclines and neomycin. Non-ST398 MRSA isolates were more likely to be resistant to florfenicol and neomycin as well as more likely to be multidrug resistant compared to ST398 MRSA isolates. These findings indicate that MRSA can be recovered from persons visiting contaminated farms. However, the duration of carriage was very brief and most likely represents contamination of nasal passages rather than biological colonization. The most common spa types found in this study were associated with ST5 and expands the range of livestock-associated MRSA types.

Comments

This article is from PLoS One, Vol.8 (2013): e53738, doi:10.1371/journal.pone.0053738.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections