Modeling Path Loss in Confined Animal Feeding Operations

Thumbnail Image
Date
2008-06-01
Authors
Darr, Matthew
Zhao, Lingying
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Darr, Matthew
Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Wireless sensor networking technology has great potential to advance monitoring of animal environments. Recent applications are very limited due to a lack in understanding of the performance of wireless sensors in large-scale, concentrated, and confined animal feeding operations. Wireless sensor performance in poultry layer facilities was evaluated through empirical testing of path loss, which was measured as the Receive Signal Strength Indicator value, using two commercial wireless sensor modules connected in a point-to-point configuration. Significant path loss was caused by free space, animal cages, animal presence, and concrete floor separations. The influence of each affecting factor was modeled based on the Single Slope derivation of the Friis’ free space path loss model. The transmission efficiency factor within a single aisle way was found to be 2.6. Fully stocked animal cages yielded an additional 22.5 and 24.9 dB path loss for one and two cages respectively. Concrete floors separating levels of the test layer facility exhibited an additional path loss of -22.97 + 10.57 log (r m ) compared to the path loss at a similar distance when not separated by concrete.

A two-dimensional path loss prediction model was developed based on the log of transmission distance, the number of aisle separations, a second order aisle separation term, and an interaction term between separation distance and aisle separation. The model was able to predict 86% of the system variability and was able to produce an average error of -0.7 dB for all combined points. The model results are based on experimental measurements made versus a 1 mW transmission source and can thus be accurately scaled to predict the performance of higher or lower power transmission systems within a similarly designed poultry layer facility.

Comments

This is an ASABE Meeting Presentation, Paper No. 083326.

Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008