Prediction of Indoor Climate and Long-term Air Quality Using a Building Thermal Transient model, Artificial Neural Networks and Typical Meteorological Year

Thumbnail Image
Date
2009-06-21
Authors
Sun, Gang
Hoff, Steven
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hoff, Steven
Professor Emeritus
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

The objective of this research was to develop a building thermal analysis and air quality predictive (BTA-AQP) model to predict indoor climate and long-term air quality (NH3, H2S and CO2 concentrations and emissions) for swine deep-pit buildings. The paper presents the development of the BTA-AQP model using a building thermal transient model, artificial neural networks, and typical meteorological year (TMY3) data in predicting long-term air quality trends. The good model performance ratings (MSE/S.D.<0.5, CRM˜0; IoA˜1; and Nash-Sutcliffe EF > 0.5 for all the predicted parameters) and the graphical presentations reveal that the BTA-AQP model was able to accurately forecast indoor climate and gas concentrations and emissions for swine deep-pit buildings. By comparing the air quality results simulated by the BTA-AQP model using the TMY3 data set with those from a five-year local weather data set, it was found that the TMY3-based predictions followed the long-term mean patterns well, which indicates that the TMY3 data could be used to represent the long-term expectations of source air quality. Future work is needed to improve the accuracy of the BTA-AQP model in terms of four main sources of error: (1) Uncertainties in air quality data; (2) Prediction errors of the BTA model; (3) Prediction errors of the AQP model, and (4) Bias errors of the TMY3 and its limited application.

Comments

This is an ASABE Meeting Presentation, Paper No. 096913.

Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 2009