Impact of Temperature and Mixing on Methane Production Rates of Swine Manures obtained from Deep pit Storages

Thumbnail Image
Date
2013-07-01
Authors
Da Silva Batista, Ana
Van Weelden, Mark
Andersen, Daniel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

The appearance of copious amounts of foam on the surface of deep-pit swine manure storages throughout the Midwestern United States is a serious concern for the pork industry. Manure foam has the capacity to trap gases produced by the anaerobic decomposition of the manure, leading to dangerous flammable gas concentrations upon agitation or foam disturbance. One potential cause of foaming is increased methane production from the manure. To this end, personnel at the Agricultural Waste Management Lab at Iowa State University developed a test to evaluate the methane production rate of manure. The goal of this work is to describe this assay, provide a basic summary and validation of the results it provides, and to evaluate the impact that agitation (shaken versus non-shaken) and temperature (5, 15, 25, and 35°C) had on the measured methane production rate of swine manure obtained from three swine finishing facilities in North Central Iowa. The experiment was conducted using a full factorial design with three treatments: manure source (a random variable), agitation (a fixed effect), and temperature (a fixed effect). The results indicated that the test is yielding methane production rates similar to those reported in literature. The results of the factorial experiment indicated that temperature significantly impacted the methane production rate in these tests, but that agitation did not. To better understand the impact of temperature methane production rates were plotted as a function of temperature and fitted to the Arrhenius equation. The results indicated that methane production rates approximately doubled with every 10°C increase in temperature.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2013