A Lot Aggregation Optimization Model for Minimizing Food Traceability Effort

Thumbnail Image
Date
2009-06-01
Authors
Wang, Lizhi
Hurburgh, Charles
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wang, Lizhi
Affiliate Professor
Person
Hurburgh, Charles
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

This paper proposes a lot aggregation optimization model for minimizing the traceability effort at a grain elevator. The problem involves blending of bulk grain to meet customer specifications. A mathematical multi-objective mixed integer programming (MIP) model is proposed with two objective functions. The objective functions allow in calculating the minimum levels of lot aggregation and minimum discounts that need to be applied to a shipment when the customer contract specifications are not met. Constraints on the system include customer contract specifications, availability of grain at the elevator and the blending requirements. The solutions include the quantities of grain lots from different bins to be used for blending for a shipment while using the minimum number of storage bins and the total discounts to be applied. The numerical results are presented for two shipment scenarios to demonstrate the application of this model to bulk grain blending. The Pareto optimal solutions were calculated that represent the different optimal solutions for the blending problem. This provides the elevator management with a set of blending options. This model provides an effective method for minimizing the traceability effort by minimizing the food safety risk. Besides minimizing the lot aggregation, this model also allows in using the maximum volume of grain present in a given bin which leads to emptying of the storage bins and the extent of aggregation of old grain lots with the new incoming lots can decrease considerably. Use of fewer bins for blending shipments is also easier logistically and can lead to additional savings in terms of grain handling cost and time.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 2009