Spatial and Diurnal Variations of Particulate Matter Concentration of a Pilot-Scale Aviary Layer House in Winter

Thumbnail Image
Date
2018-01-01
Authors
Wang, Yu
Li, Dapeng
Leonard, Suzanne
Shi, Zhengxiang
Xin, Hongwei
Chai, Lilong
Li, Baoming
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Xin, Hongwei
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Animal ScienceAgricultural and Biosystems EngineeringEgg Industry Center
Abstract

Laying hen production plays an important role in particulate matter (PM) emissions which potentially cause air pollution and adverse health effect on animals and workers. Aviary cage-free (CF) egg production systems have been attracting increasing attention due to concerns over animal welfare and increased market demand. While studies have been conducted to characterize PM concentrations and emissions of aviary CF houses with litter floor, few reports are available of this information for aviary CF layer houses equipped with slat floor. In this study, PM concentrations – both spatial and diurnal patters inside a pilot-scale aviary CF layer house (1,800 laying hens, LxWxH of 28.2 x 9.0 x 3.0 m) in northern China were measured under winter conditions. Daily mean PM2.5, PM10, and TSP levels were found to be 0.19±0.11, 1.05±0.65, 2.90±2.07 mg/m3, respectively, which were considerably lower than those reported in previous studies of aviary CF houses with litter floor in cold weather. Daytime PM concentrations were significantly higher than those at night primarily due to differences in animal activity and feed supply. The average PM10 and TSP concentrations during light period (5:00-21:00 h) were 1.34 mg/m3 and 3.75 mg/m3, amounting to 279% and 304% of those during the dark period (21:00-5:00h), respectively. Spatial variations for PM10 and TSP were observed in the experimental hen house due to non-uniform distribution of ventilation air and localized generation of the constituents. Higher TSP concentrations (4.26 mg/m3) were found at worker respiratory level (2.0 m) as compared to floor level (0.5 m, 3.00 mg/m3). TSP concentration at one end of the house (west) was found to be 28.3% and 86.9% higher than the middle and the opposite (east) end. This spatial variation characteristic points out the importance of multi-location sampling when assessing indoor air quality and aerial emissions (for cross ventilation). Data from this study will be useful for future improvement of the housing ventilation design and operation. Future study should also assess PM concentrations of the housing style under warm seasons.

Comments

This presentation is published as Wang, Yu, Dapeng Li, Suzanne M. Leonard, Zhengxiang Shi, Hongwei Xin, Lilong Chai, and Baoming Li. "Spatial and Diurnal Variations of Particulate Matter Concentration of a Pilot-Scale Aviary Layer House in Winter." 10th International Livestock Environment Symposium (ILES X). Omaha, NE. September 25-27, 2018. Paper No. ILES18-141. DOI: 10.13031/iles.18-141. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018