Campus Units

Agricultural and Biosystems Engineering, Chemical and Biological Engineering, Civil, Construction and Environmental Engineering, Food Science and Human Nutrition, Mechanical Engineering, Environmental Science, Toxicology, Bioeconomy Institute (BEI)

Document Type



2021 ASABE Annual International Meeting

Publication Version

Published Version

Publication Date


First Page




Conference Title

2021 ASABE Annual International Meeting

Conference Date

July 12-16, 2021


The rural communities are affected by gaseous emissions from intensive livestock production. Practical mitigation technologies are needed to minimize emissions from stored manure and improve air quality inside barns. In our previous research, the one-time surficial application of biochar to swine manure significantly reduced emissions of NH3 and phenol. We observed that the mitigation effect decreased with time during the 30-day trials. In this research, we hypothesized that bi-weekly reapplication of biochar could improve the mitigation effect on a wider range of odorous compounds using larger scale and longer trials. The objective was to evaluate the effectiveness of biochar dose and reapplication on mitigation of targeted gases (NH3, odorous VOCs, odor, GHGs) from stored swine manure on a pilot-scale setup over 8-weeks. The bi-weekly reapplication of the lower biochar dose (2 kg/m2) showed much higher significant percent reductions of emissions for NH3 (33% without & 53% with reapplication) and skatole (42% without & 80% with reapplication), respectively. In addition, the reapplication resulted in the emergence of statistical significance to the mitigation effect for all other targeted VOCs. Specifically, for indole, the % reduction improved from 38% (p=0.47, without reapplication) to 78% (p=0.018, with reapplication). For phenol, the % reduction improved from 28% (p=0.71, without reapplication) to 89% (p=0.005, with reapplication). For p-cresol, the % reduction improved from 31% (p=0.86, without reapplication) to 74% (p=0.028, with reapplication). For 4-ethyl phenol, the percent emissions reduction improved from 66% (p=0.44, without reapplication) to 87% (p=0.007, with reapplication). The one-time 2 kg/m2 and 4 kg/m2 treatments showed similar effectiveness in mitigating all targeted gases, and no statistical difference was found between the dosages. The one-time treatments showed significant % reductions of 33% & 42% and 25% & 48% for NH3 and skatole, respectively. The practical significance is that the higher (one-time) biochar dose may not necessarily result in improved performance over the 8-week manure storage, but the bi-weekly reapplication showed significant improvement in mitigating NH3 and odorous VOCs. The lower dosages and the frequency of reapplication on the larger-scale should be explored to optimize biochar treatment and bring it closer to on-farm trials


This conference presentation is published as Chen, Baitong, Jacek A. Koziel, Chumki Banik, Hantian Ma, Myeongseong Lee, Samuel C. O’Brien, Peiyang Li, Daniel S. Andersen, Andrzej Bialowiec, and Robert C. Brown. "Reduction of gaseous emissions from swine manure: effect of biochar dose and reapplication." ASABE Paper No. 2100086. ASABE Annual International Meeting, July 12-16, 2021. DOI: 10.13031/aim.202100086. Posted with permission.

Copyright Owner

American Society of Agricultural and Biological Engineers



File Format