Pathogen Inactivation Potential and Carcass Degradation in a Bio-secure Emergency Livestock Mortality Composting System

Thumbnail Image
Date
2008-06-01
Authors
Ahn, H.
Koziel, Jacek
Crawford, Benjamin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Glanville, Thomas
Professor Emeritus
Person
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

An emergency swine mortality composting study at Iowa State University was conducted to evaluate the performance of six on-farm carbon source or “envelope” materials (corn silage, oat straw, cornstalks, wood shavings, soybean straw, and alfalfa hay) when used in a plastic-wrapped passively-ventilated emergency composting system that was first employed for emergency disposal of poultry in British Columbia in 2004. With the exception of tub grinding to reduce the particle size of long and fibrous materials, they were used “as is,” in their normal state — as would likely be the case during an emergency — without benefit of mixing or preconditioning to optimize C:N ratios or moisture content. Moisture content fell into two distinct groups: wood, soy, and alfalfa products had initial moisture content of < 20%; while the other materials ranged from 55-62%. After 8 weeks moisture ranged from 11-18% and 27-35% respectively for the two groups. Minimum O 2 concentrations occurred during the first 2 weeks of composting, and ranged from 9-16% in relatively fine-grained wood and silage materials, to 17-20% in the others. Daily temperatures in material surrounding the carcasses also were highest during the first two weeks. Mean temperature ranges during the initial 30 days of composting were 47-57 °C for the moist group, and 35-43 °C for the dry group. Total soft-tissue degradation ranged from 77-78% for silage, wood shavings, and alfalfa hay, and from 85-88% for the other three materials. The highest degradation occurred in two materials having high initial moisture, and high mean 30-day temperatures, while the lowest degradation occurred in two materials having low 30-day mean temperatures and low initial moisture. The temperature/moisture correlation was not consistent, however, as soy straw — exhibiting both low mean temperature and low initial moisture — had high carcass degradation, and silage — having high temperature and high moisture — was in the group producing lower degradation. Remains recovered from all test units after 8 weeks appeared to be desiccated, suggesting that carcass decomposition was terminated by low moisture. This is consistent with the low final moisture levels, and indicates that moisture coming from the carcasses plays a significant role in sustaining decomposition. It also suggests that airflow rates through the matrix may have been excessive and that measures need to be taken to reduce airflow and prevent excessive moisture loss. Success rates meeting USEPA Class A or B criteria for pathogen reduction were much higher for the moist materials than for dry ones, indicating that procedures for emergency composting of carcasses resulting from disease should include pre-moistening of carcass surfaces and envelope materials, and to taking measures to control excessive airflow through the composting matrix that can result in premature drying of envelope materials.

Comments

This is an ASABE Meeting Presentation, Paper No. 084426.

Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008