Agricultural and Biosystems Engineering Publications

Campus Units

Agricultural and Biosystems Engineering, Civil, Construction and Environmental Engineering, Food Science and Human Nutrition, Toxicology

Document Type

Article

Publication Version

Published Version

Publication Date

2019

Journal or Book Title

Sustainability

Volume

11

Issue

3

First Page

935

Research Focus Area(s)

Biological and Process Engineering and Technology

DOI

10.3390/su11030935

Abstract

The torrefaction of municipal solid waste is one of the solutions related to the Waste to Carbon concept, where high-quality fuel—carbonized refuse-derived fuel (CRDF)—is produced. An identified potential problem is the emission of volatile organic compounds (VOCs) during CRDF storage. Kinetic emission parameters have not yet been determined. It was also shown that CRDF can be pelletized for energy densification and reduced volume during storage and transportation. Thus, our working hypothesis was that structural modification (via pelletization) might mitigate VOC emissions and influence emission kinetics during CRDF storage. Two scenarios of CRDF structural modification on VOC emission kinetics were tested, (i) pelletization and (ii) pelletization with 10% binder addition and compared to ground (loose) CRDF (control). VOC emissions from simulated sealed CRDF storage were measured with headspace solid-phase microextraction and gas chromatography–mass spectrometry. It was found that total VOC emissions from stored CRDF follow the first-order kinetic model for both ground and pelletized material, while individual VOC emissions may deviate from this model. Pelletization significantly decreased (63%~86%) the maximum total VOC emission potential from stored CDRF. Research on improved sustainable CRDF storage is warranted. This could involve VOC emission mechanisms and environmental-risk management.

Comments

This article is published as Białowiec, Andrzej, Monika Micuda, Antoni Szumny, Jacek Łyczko, and Jacek A. Koziel. "Waste to Carbon: Influence of Structural Modification on VOC Emission Kinetics from Stored Carbonized Refuse-Derived Fuel." Sustainability 11, no. 3 (2019): 935. DOI: 10.3390/su11030935. Posted with permission.

Access

Open

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Share

COinS