Agricultural and Biosystems Engineering Publications

Campus Units

Agricultural and Biosystems Engineering, Food Science and Human Nutrition, Biorenewable Resources and Technology, Environmental Science, Sustainable Agriculture, Center for Bioplastics and Biocomposites, Center for Crops Utilization Research

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

2019

Journal or Book Title

Applied Engineering in Agriculture

Research Focus Area(s)

Biological and Process Engineering and Technology

DOI

10.13031/aea.13142

Abstract

The knowledge of physical and thermal properties in cereals, grains and oilseeds establishes an essential engineering tool for the design of equipment, storage structures, and processes. The physical properties and thermal properties for Chia, Kañiwa, Farro and Triticale grains were investigated at three levels of moisture content: 10%, 15% and 20% (d.b). Physical properties included 1000 seed weight, dimensions, mean diameters, surface area, volume, sphericity, and aspect ratio. Results indicated 1000 seed weight increased linearly with moisture content from 2.0 to 3.5 g for Chai, 2.5 to 4.0 g for Kañiwa, 42.7 to 48.3 g for Farro, and 51.0 to 53.7 g for Triticale. The porosity for Farro and Triticale increased from 38.71% to 44.1%, 40.37% to 44.65%, respectively, as moisture increased. Angle of repose increased as moisture content increased, as did values of L, a* and b* for all grains. Thermal properties of Kañiwa, Farro, and Triticale showed high correlation to moisture content. A negative relationship was observed for the specific heat capacity and thermal conductivity, while the thermal diffusivity had a positive linear increase trend with moisture content. This study showed that physical and thermal properties varied from grain to grain as a function of moisture content, and these data will be useful for future application development.

Comments

This is a manuscript of an article published as Suleiman, Rashid, Kun Xie, and Kurt A. Rosentrater. "Physical and Thermal Properties of Chia, Kañiwa, Triticale, and Farro Seeds as a Function of Moisture Content." Applied Engineering in Agriculture (2019). DOI: 10.13031/aea.13142. Posted with permission.

Copyright Owner

American Society of Agricultural and Biological Engineers

Language

en

File Format

application/pdf

Published Version

Share

COinS