
Agricultural and Biosystems Engineering Publications
Campus Units
Agricultural and Biosystems Engineering, Civil, Construction and Environmental Engineering, Food Science and Human Nutrition, Toxicology
Document Type
Article
Publication Version
Published Version
Publication Date
10-25-2019
Journal or Book Title
Materials
Volume
12
Issue
20
First Page
3334
Research Focus Area(s)
Land and Water Resources Engineering
DOI
10.3390/ma12203334
Abstract
Oxytree is a fast-growing energy crop with C4 photosynthesis. In this research, for the first time, the torrefaction kinetic parameters of pruned Oxytree biomass (Paulownia clon in Vitro 112) were determined. The influence of the Oxytree cultivation method and soil class on the kinetic parameters of the torrefaction was also investigated. Oxytree pruned biomass from a first-year plantation was subjected to torrefaction within temperature range from 200 to 300 °C and under anaerobic conditions in the laboratory-scale batch reactor. The mass loss was measured continuously during the process. The relative mass loss increased from 1.22% to 19.56% with the increase of the process temperature. The first-order constant rate reaction (k) values increased from 1.26 × 10−5 s−1 to 7.69 × 10−5 s−1 with the increase in temperature. The average activation energy for the pruned biomass of Oxytree torrefaction was 36.5 kJ∙mol−1. Statistical analysis showed no significant (p < 0.05) effect of the Oxytree cultivation method and soil class on the k value. The results of this research could be useful for the valorization of energy crops such as Oxytree and optimization of waste-to-carbon and waste-to-energy processes.
Access
Open
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright Owner
The Authors
Copyright Date
2019
Language
en
File Format
application/pdf
Recommended Citation
Świechowski, Kacper; Stegenta-Dąbrowska, Sylwia; Liszewski, Marek; Bąbelewski, Przemysław; Koziel, Jacek A.; and Białowiec, Andrzej, "Oxytree Pruned Biomass Torrefaction: Process Kinetics" (2019). Agricultural and Biosystems Engineering Publications. 1087.
https://lib.dr.iastate.edu/abe_eng_pubs/1087
Included in
Agriculture Commons, Bioresource and Agricultural Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons
Comments
This article is published as Świechowski, Kacper, Sylwia Stegenta-Dąbrowska, Marek Liszewski, Przemysław Bąbelewski, Jacek A. Koziel, and Andrzej Białowiec. "Oxytree Pruned Biomass Torrefaction: Process Kinetics." Materials 12, no. 20 (2019): 3334. DOI: 10.3390/ma12203334. Posted with permission.