Agricultural and Biosystems Engineering Publications

Campus Units

Agricultural and Biosystems Engineering, Food Science and Human Nutrition, Biorenewable Resources and Technology, Environmental Science, Sustainable Agriculture, Center for Bioplastics and Biocomposites, Center for Crops Utilization Research

Document Type

Article

Publication Version

Published Version

Publication Date

1-1-2020

Journal or Book Title

Energies

Volume

13

Issue

1

First Page

181

Research Focus Area(s)

Biological and Process Engineering and Technology

DOI

10.3390/en13010181

Abstract

Among the driving factors for the high production cost of cellulosic butanol lies the pretreatment and product separation sections, which often demand high amounts of energy, chemicals, and water. In this study, techno-economic analysis of several pretreatments and product separation technologies were conducted and compared. Among the pretreatment technologies evaluated, low-moisture anhydrous ammonia (LMAA) pretreatment has shown notable potential with a pretreatment cost of $0.16/L butanol. Other pretreatment technologies evaluated were autohydrolysis, soaking in aqueous ammonia (SAA), and soaking in sodium hydroxide solution (NaOH) with pretreatment costs of $1.98/L, $3.77/L, and $0.61/L, respectively. Evaluation of different product separation technologies for acetone-butanol-ethanol (ABE) fermentation process have shown that in situ stripping has the lowest separation cost, which was $0.21/L. Other product separation technologies tested were dual extraction, adsorption, and membrane pervaporation, with the separation costs of $0.38/L, $2.25/L, and $0.45/L, respectively. The evaluations have shown that production of cellulosic butanol using combined LMAA pretreatment and in situ stripping or with dual extraction recorded among the lowest butanol production cost. However, dual extraction model has a total solvent productivity of approximately 6% higher than those of in situ stripping model.

Comments

This article is published as Mahmud, Nazira, and Kurt A. Rosentrater. "Techno-Economic Analysis (TEA) of Different Pretreatment and Product Separation Technologies for Cellulosic Butanol Production from Oil Palm Frond." Energies 13, no. 1 (2020): 181. DOI: 10.3390/en13010181. Posted with permission.

Access

Open

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Share

COinS