Characterization of prairie pothole inundation using AnnAGNPS under varying management and drainage scenarios

Thumbnail Image
Date
2021-09-01
Authors
Kaleita, Amy
Soupir, Michelle
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Kaleita, Amy
Department Chair
Person
Soupir, Michelle
Associate Dean
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Civil, Construction and Environmental EngineeringAgricultural and Biosystems Engineering
Abstract

Farmed prairie potholes are small, isolated depressions frequently classified as semi-permanent wetlands that make up a significant portion of land area in the Des Moines Lobe (DML) of the larger Prairie Pothole Region (PPR). Historically, these depressions have been subjected to significant drainage to improve their agricultural capacity. However, many assessments of the economic return of continuing to farm these depressions suggest that continued attempts to produce conventional row crops is not profitable and has other ecological consequences beyond crop drownout. This study expands the existing discussion of land use and drainage alternatives in a watershed modeling context. This study utilized the Annualized Agricultural Non-Point Source (AnnAGNPS) model to individually simulate the long-term hydrology of 6 prairie potholes using a matrix of land use and drainage modifications. Results suggest the presence of artificial drainage is the dominant factor in prairie pothole hydrology, while retirement and no-till practices can provide moderate reductions in flood inundation. Conservation tillage induces minimal change on flood metrics. Results show that average annual maximum inundated surface area is reduced by at most 50% across all simulations and the median annual days flooded could be reduced by 25 days, though this is less consistent when isolating high-precipitation years. Regardless of drainage status, in all scenarios there are, on average, more than two inundations events per year lasting 2–4 days. Longer events occur approximately once per year on average. Area inundation frequency curves suggest up to a 20% reduction in maximum pothole area inundated annually can be achieved at the 2-year return frequency. The availability of this data helps characterize the hydrology of farmed potholes more generally over a wide range of conditions, providing a reference for the prioritization of potholes for conservation or alternative management.

Comments

This is a manuscript of an article published as Nahkala, Brady A., Amy L. Kaleita, and Michelle L. Soupir. "Characterization of prairie pothole inundation using AnnAGNPS under varying management and drainage scenarios." Agricultural Water Management 255 (2021): 107002. DOI: 10.1016/j.agwat.2021.107002. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections